Parallel multiphysics simulations of charged particles in microfluidic flows

نویسندگان

  • Dominik Bartuschat
  • Ulrich Rüde
چکیده

The article describes parallel multiphysics simulations of charged particles in microfluidic flows with the waLBerla framework. To this end, three physical effects are coupled: rigid body dynamics, fluid flow modelled by a lattice Boltzmann algorithm, and electric potentials represented by a finite volume discretisation. For solving the finite volume discretisation for the electrostatic forces, a cell-centered multigrid algorithm is developed that conforms to the lattice Boltzmann meshes and the parallel communication structure of waLBerla. The new functionality is validated with suitable benchmark scenarios. Additionally, the parallel scaling and the numerical efficiency of the algorithms are analysed on an advanced supercomputer. c © 2014 Published by Elsevier Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Multiphysics Simulations of Charged Particle Electrophoresis for Massively Parallel Supercomputers

The article deals with the multiphysics simulation of electrokinetic flows. When charged particles are immersed in a fluid and are additionally subjected to electric fields, this results in a complex coupling of several physical phenomena. In a direct numerical simulation, the dynamics of moving and geometrically resolved particles, the hydrodynamics of the fluid, and the electric field must be...

متن کامل

Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology

Understanding and optimizing fluid flows through in vitro microfluidic perfusion systems is essential in mimicking in vivo conditions for biological research. In a previous study a microfluidic brain slice device (microBSD) was developed for microscale electrophysiology investigations. The device consisted of a standard perfusion chamber bonded to a polydimethylsiloxane (PDMS) microchannel subs...

متن کامل

Ratcheted electrophoresis for rapid particle transport.

Ratcheted electrophoresis of contact-charged particles allows for high speed transport through microfluidic channels over large distances and even against fluid flows. Using a set of predictive design heuristics, we demonstrate an extension of this microfluidic ratchet to separate conductive particles from a particle suspension.

متن کامل

Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems.

Computational fluid dynamic (CFD) simulation is a powerful tool in the design and implementation of microfluidic systems, especially for systems that involve hydrodynamic behavior of objects such as functionalized microspheres, biological cells, or biopolymers in complex structures. In this work, we investigate hydrodynamic trapping of microspheres in a novel microfluidic particle-trap array de...

متن کامل

Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids

Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Science

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015